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Computational savings in hardware and software mechanizations of the Fast
Fourier Transform (FFT) can be obtained by two methods: the first method,
generalizable for N a power of 2, exploits the intrinsic simplicity of multiplication
by j (unit imaginary), in addition to the periodicity and half-period negation
identities usually employed. The second method, outlined for the case N = 16
only, exploits the quadrantal symmetries of the real cosine and sine functions in
an implementation of the complex FFT which uses only real multiplications. The
first method requires N/2 log, N/8 + 2 nontrivial complex multiplications, or 10
complex multiplications at N = 16. The second method requires only 12 real-
coefficient multiplications at N = 16 to achieve the same result, but a generaliza-

tion to higher N is not presently known.

I. Introduction

The conventional Fast Fourier Transform (FFT), of
Refs. 1 and 2, is a highly efficient means of accomplishing
the discrete Fourier transform. The current versions of
the FFT for N (number of tabular points in the discrete
function to be transformed) equal an integer power of
2 are based on matrix factorization and exploitation of
the two complex-exponential identities
(periodicity)

e—j 2w/Nnm = e-j 2%/N (mnmodN) N’m’n integers

@)
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(half-period

negation) e—j 27/N (n+N[2) = .....e—j 27/Nn

N even

@)

to which might be added (as done in this report) the
identity

(identification
of —f)

eI 2T/N (V1) = —j (3)

The result is often expressed as a signal flowgraph in
which the number of complex additions (subtractions)
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and complex multiplications is seen to be enormously
reduced relative to the number of such operations which
would be required in executing the transform verbatim
from its usual N X N-matrix-times-N-vector definition.

The objective of this report is to present two methods
for reducing still further the number of multiplications
required to implement the FFT. The derivation of the
first method (FFT) exploits (8) to obtain a favorable
grouping of the multiplications by j. The derivation of
the second method—real FFT (RFFT)—exploits four
additional identities:

(frequency

aliasing) eI 2T/Nmn = p+j 2w/ Nm (N -n) 4)

(definition

of complex ey 9 V.

exponential) ¢ =\cosmn | — ]\ sin—zmn
(5)

(cosine in

2r 71 [ 2r N N 6

cos| 5 n |=sin| —{n+ (6)
s o 2 . o 2

Sin |:90 + —Z\]_ n:l =S I:QO -'Iv' n]

[ 2c 1 [2r
sim W‘ﬂ: sin -ﬁn

(7)

terms of sine)

(sine of full
period in terms
of quarter
period, with
symmetry)

The derivations for both methods follow parallel devel-
opments based on matrix partitioning. The resulting
transforms are expressed as flowgraphs for comparison of
the methods. At N =16, the RFFT requires 12 real-
coefficient multiplications, 72 additions, and 7 #rivial mul-
tiplications by j (or —j), the unit imaginary, to accomplish
the transform, as opposed to the 10 complex-coefficient
multiplications, 64 additions, and 7 multiplications by the
unit imaginary required by the FFT.

It is not presently known whether the savings in multi-
plications of the RFFT over the FFT for N = 16 can be
obtained in general. The complex FFT used in the com-
parison is possibly a new form in that its flowgraph has
exactly (N/2) log, (N/8) + 2 nontrivial multiplications
(with N log.N additions) as compared with (N/2) log,
(N/2) multiplications usually quoted in the literature.
The savings thereby obtained are, however, implicit (if
not easily recognized) in other standard forms of the
FFT.
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Il. Discussion of FFT and RFFT Flowgraphs

Flowgraphs for the FFT and RFFT are given for the
case N = 16 in Figs. 1 and 2, respectively. In both flow-
graphs, the complex-valued data vector to be transformed
is (%0,%1, **+,%35), and the complex-valued transform of
the data is the vector (so,ss, ", $15). Nodes of the graphs
having two input signal lines are summing nodes: Any
signal brought to a summing node via a solid line is
added, and any signal brought on a dashed line is sub-
tracted. The signal resulting from the summation (or
differencing) operation then flows to subsequent nodes.
An integer n appearing inscribed in a node of the FFT
(Fig.1) implies that the result of summation is to be multi-
plied by the complex scalar coefficient exp [ —j(2=/N)n]
which is, for N = 16, exp [ —(27/16)n]. Somewhat cor-
respondingly, an integer n appearing inscribed in a node
of the RFFT (Fig. 2) implies multiplication by the real
scalar coefficient sin [(2=/N)n], which is sin [(2/16)n]
when N = 16. It was not possible, in drawing the RFFT
diagram, to associate all of the required multiplications
with specific nodes. To accommodate this (unexpected)
exigency, the square/diamond symbol containing an in-
scribed integer is used to associate a multiplication with
a path rather than a node.

Multiplications by the unit imaginary (+j, or —j as
appropriate) appear in both the FFT and RFFT dia-
grams. It has seemed reasonable to count such multipli-
cations separately from those multiplications involving a
general complex coefficient, because multiplication of a
complex number by § is accomplished by a complemen-
tary swap, i.e., swap the real and imaginary parts, then
negate one of them, as shown in (8).

jla +iby=-—b +ja  abreal (8)
Thus, it may be appreciated that multiplication by j is
actually a simpler operation than multiplication by a
general complex coefficient, and is, in fact, simpler than
a complex addition. This is the reason underlying the
choice of version of the FFT selected for comparison with
the RFFT, since other FFT versions would appear to
have more complex multiplications, and thus compare
less favorably with the RFFT.

The main advantage that might be claimed for the
RFFT is reduction of the number of multiplication opera-
tions required to implement the transform. That the use
of multiplication by real coefficients (as in the RFFT)
constitutes a saving over the use of multiplication by
complex coefficients is apparent: Since the data to be
transformed are assumed complex (worst case for the
RFFT), it requires four real multiplications to implement
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complex-coeflicient multiplication, but only two real mul-
tiplications when the coefficient is a priori known to be
only real-valued. Thus, the 12 real-coefficient multiplica-
tions of the RFFT of Fig. 2 represent considerably fewer
multiplications than the 10 complex-coefficient multipli-
cations of the FFT of Fig. 1. It is also true that multiphi-
cation of a complex number by a complex coefficient
requires the equivalent of a complex addition, i.e.,
(a +ib) (c + jd)=(ac — bd) + j(bc + ad). Thus, even
though the RFFT uses 72 additions and the FFT uses
64 additions, it appears that the excess of additions in the
RFFT is balanced in the comparison by the fact that
12 additions are implicit in the 12 complex-coefficient
multiplications in the FFT.

The FFT of Fig. 1 is of that class of FFTs in which
normally ordered data are transformed into a shuffled-
order transform; i.e., the resulting elements of the trans-
form do not come out in the natural order of their
subscripts. (The shuffled-order form of output is one of
the accepted canonical forms, cf. Ref. 2.) It will be seen
that the RFFT of Fig. 2 also has a shuffled-order output,
which has been arranged to show some (incomplete)
similarity to the FFT output in Fig. 1. A general rule for
the RFFT output arrangement awaits development.

A curious phenomenon of the RFFT which occurs by
design is the fact that the coefficients of the conven-
tional discrete Fourier analysis (Ref. 8) in terms of
sines and cosines is obtained at intermediate points of
the flowgraph: The cosine-harmonic amplitudes are
@0,41,8: " 05,8:,05 and the sine-harmonic amplitudes are
by,b,, . ,bs,b; (b, and by are never present), where the
subscript indicates the frequency or harmonic number.
Thus, the RFFT (suitably truncated) provides a “fast”
method for obtaining the Fourier analysis.

Ill. Derivation of the Comparison FFT
by Matrix Partitioning

The complex-valued discrete Fourier transform (DFT)
is usually defined by the matrix-vector product (9):

So Xo
$1 = i g-izm/Nmn %
N
Sy Xy-1

N = dimension of transform matrix
m = row index (“frequency”)

n = column index (“time”) 9)
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In (9), the column vector {x} on the right is a complex-
valued time series of N points (equally spaced in time)
which is to be transformed by the indicated product to
produce the column vector {s}, which is called the dis-
crete Fourier transform (DFT) of {x}. The transform {s}
is, however, seldom computed by the direct application
of the product (9). This is because combinational schemes,
called “fast” Fourier transforms (FFT) exist which can
compute the DFT with far fewer multiplications and
additions than are indicated in (9). One such FFT will be
derived in this section.

A. Notation

It is customary in DFT derivations to suppress the
factor 1/N appearing in (9) and to focus attention on
the exponents of the exponential elements of the DFT
matrix in (9). Consider the case N = 16 to be used in the
derivation. The 16 X 16 DFT can be indicated as shown
in Fig. 3a, in which the elements of the matrix (9) are
replaced by the exponents mn of the matrix elements
which were of the form [exp — j(2=/16)]™" with applica-
tion of the periodicity identity (1).

The elements of the transform {s} can, of course, be
computed in any desired order by permuting the order
in which the rows of exponents appear in the transform
matrix. A convenient arrangement of the rows is that
shown in Fig. 3b. This arrangement gives the elements of
{s} in the so-called “shuffled” order (Ref. 2). The shuffling
procedure may be derived by inspection, noting that all
rows having 0 in column 8 are sorted into a group at the
top of the matrix, so that the remaining rows having 8 in
column § are sorted to the bottom. The top and bottom
halves are then regarded as independent submatrices,
and these are further sorted to group together those rows
having identical elements in column 4, then column 2.
This row sorting operation may be called an “even-odd
sort on identical column keys.”

B. Derivation

The sorting operation positions the elements of the
16 X 16 DFT matrix so that the relationships A,, = A,,
and A., = —A,, hold among the four 8 X § partition-
block submatrices. That A,, = — A., follows from the nega-
tion identity (2); i.e., if 8 is added to the exponents of A,
(modulo 16, of course), the exponents of A,, result. Appli-
cation of the distributive law causes the DFT of Fig. 3b
to be reduced to the form shown in Fig. 4. This reduction
is accomplished at a cost of 8 additions and 8 subtractions
(called 16 “additions”). The reduction leaves two 8 X 8
matrix multiplications as the indicated operations to be
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carried out to complete the transform. But it turns out
that these indicated matrix multiplications can them-
selves be reduced by a procedure essentially the same as
that already applied. Thus, the matrix multiplications
remaining at each step of reduction are never actually
carried out explicitly.

Before continuing to the next step of reduction, it may
be noted by inspection of the matrix for the half-
transform (sy,S,, *** ,87,815) that if exponent 4 is factored
from the last four columns, then relationships similar to
the A;, = Ay, and A,; = — A,, of the preceding step hold
among the 4 X 4 partition-blocks. The factoring is most
efficiently accomplished by multiplying the last four ele-
ments of the column vector by {exp [ —j(2x/16)]1}* = —j,
as indicated schematically by the circle symbol (), and
subtracting 4 from the elements of the last four matrix
columns. It may now be seen that column vectors on the
right in Fig. 4 are precisely those available at the first
echelon of nodes in the FFT flowchart of Fig. 1. The
principle of factoring entire columns of matrix elements
by means of multiplication of the corresponding vector
elements is the key also to the RFFT derivation given in
the next section. In the present example, the fact that
exponents of 0 and 8 remain in column four after the
factorization causes no difficulty, since exponent 0 is
unity and exponent 8 is negation, as used in the first re-
duction step. To avoid carrying unduly complicated nota-
tion to the next reduction step, the vectors on which
matrix operations are indicated are redesignated as {y}, is
shown in Fig. 4.

Figure 5 gives the remaining reduction steps. The
procedure is the same as for the first reduction step. At
each step, the notations for vectors representing inter-
mediate computations are redefined to simplify the nota-
tion for the next step. The result is shown in the FFT
flowchart of Fig. 1. It is seen that N (N =16 in the
example) additions are required at each step of the
reduction, and that exactly N log, N additions (if N is a
power of 2) are required. (Here, Nlog, N = 64). The
number of multiplications by a complex scalar coefficient
is 10 if multiplications by —j (unit imaginary) are not
counted (as indicated in the preceding section); other-
wise, the total number of multiplications is 17.

C. Theorem

The count C of nontrivial multiplications by complex
coeficients in an FFT flowchart based on the described
DFT reduction scheme for N a power of 2 is

N. N
C=logg+2 2<N
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The proof is by inspection. Temporarily assume 8 <N.
The number of echelons, or reduction steps is log, N. The
first echelon requires no nontrivial multiplications, and
the last echelon requires no multiplications at all. There-
fore, only E = (log, N — 2) = log, (N/4) intermediate
echelons require multiplication.

There are always less than N/2 multiplications in each
echelon: Inspecting the E intermediate echelons, it may
be seen that the lower half of the first (intermediate)
echelon requires multiplication at half its nodes. Then,
the lower 3/4 of the next echelon requires multiplication
at half its nodes. Then the lower 7/8 of the next echelon
requires multiplication at half its nodes, etc. Since the
width of the echelon is N, the number of multiplications
in the flowchart is, assuming the induction,

1 1 38 7
C"‘—2"N(‘2—+’Z‘+§+ “'>Eterms

Complementing the indicated summation gives

1 1 1 1
C——-Q_N[E—_<—2—+Z+§+ “.>Eterms]
1 1 1 1
—EN[E‘E(1+§+Z+ >m]

Summing the indicated geometric series to E terms yields

S

-1 1 ((1/2)E —-1

—E W—)]:%N[E—l+(l/2)E]

Substituting E = log, (N/4) > 1, the theorem is proved
for 8 < N. Construction of the flowgraph for the simple
cases N =2 and N = 4 establishes that the formula is
valid for 2 < N.

IV. Derivation of the RFFT

In this section, the RFFT is derived from the DFT
definition (9), with factor 1/N suppressed. This is done
by reducing the matrix in (9) to real terms to a maxi-
mum extent, introducing explicit factors of j where re-
quired, and then reducing the indicated real matrix
operations by application of the distributive law and
scalar factorization of matrix columns, similarly to what
was done in the preceding section.

A. Notation

The matrix (9) for the DFT is reduced to real terms
as shown schematically in Fig. 6. The matrix (9) is ex-
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pressed directly in Fig. 6a. Through application of the
aliasing identity (4), the positive-frequency exponentials
in the frequency range (N/2) + 1 to N — 1 are expressed
in terms of negative-frequency exponentials in the fre-
quency range — [(N/2) — 1] to —1, as shown in Fig. 6b,
for general N (even). (This modification has been applied
to the lower (N/2) — 1 rows). Without loss of generality,
application of the definition (5) to the matrix of Fig. 6b
produces, for N = 16, the matrix of Fig. 6c. It may be
observed that there are no sine terms at frequencies 0 and
8. Also, the elements of the row for cos [(2x/16)0n] are
all equal to unity (real) and the elements of the row for
cos [(27/16) 8n] are alternating +1,—1,+1,—1,... (real).

It appears then that the complex DFT can be written
in terms of a real sine-cosine matrix, with the aid of a
simple factorization, as shown in Fig. 7a. The product of
the sine-cosine matrix times the data vector {x} can itself
be regarded as a transform. This transform will be called
the discrete Fourier analysis (DFA), and is seen to be a
matrix formalism for conventional discrete Fourier analy-
sis (Ref. 3). The coefficients a,,a.,8,, " ,86,a7,8s and
bob,, - ,be,b, are, respectively, the discrete Fourier
cosine and sine amplitude coefficients. These coefficients
are real if the data vector {x} is real, and complex if {x}
is complex. The DFA matrix elements are, of course,
strictly real-valued.

The notation to be used may now be introduced: Each
element of the DFA matrix is a value of a sine or cosine
function at some value of argument. These values will be
indicated by a simple code which will express every value
in the matrix in terms of the sine function tabulated for
the first quadrant of its argument. The code is, for
N =16,

Code Value
{2 _
0 sin (E— 0> =0
1 in( <=1
sin\ g
numerals 9
2 sin (ﬁ 2)
2
3 sin (']76— 3)
L f 2r _
letter 1 sin (1—6—4> =1

It will be necessary to show negation of the encoded
sine values, and this can conveniently be done by under-
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lining. This notation may then be applied to the DFA
matrix of Fig. 7b, with the aid of identities (6) and (7),
to obtain the DFA matrix form shown in Fig. 8a.

B. Derivation

The RFFT is defined as the “fast” computational orga-
nization of the operations indicated in matrix form in
Fig. 7a. Since the transformation matrix on the left in
Fig. 7a can be accomplished with but 7 trivial multipli-
cations by j (or —f) and 14 additions, this transformation
is already in “fast” form. Thus, it will be necessary only
to derive a “fast” version of the DFA of Fig. 7b. This will
be done using the notation of Fig. 8a.

As was done in the derivation of the FFT in Section III,
the outputs of the DFA in Fig. 8a will be shuffled by
permuting the rows of the DFA matrix to the form shown
in Fig. 8b. The shuffling is done to enhance symmetries
among the 8 X 8 partition blocks. Application of the dis-
tributive law to the partition blocks of the matrix of
Fig. 8b yields the reduced transform of Fig. 9a. It may be
observed that the sums and differences of x; appearing
on the right hand side of Fig. 9a are precisely the quanti-
ties available at the first echelon of nodes in the RFFT
flowchart of Fig. 2. These sums and differences are re-
designated as {y} to simplify the notation for the second
reduction step, shown in Fig. 9b.

The reduction from the lower 8 X 8 matrix of Fig. 9a
to the two lower 4 X 4 matrices of Fig. 9b departs some-
what from the straightforward application of the dis-
tributive law, as do the subsequent reduction steps, in
that folding about the pivotal elements y; and y,. is re-
quired. What is meant by folding can be inferred from
the lower two 4 X 4 matrix operations in Fig. 9b, which
recognize the odd symmetry which holds among the
columns of rows O through 3 and the even symmetry
which holds among the columns of rows 4 through 7,
respectively, in the lower 8 X 8 matrix of Fig. 9a. Before
proceeding to the third reduction step, the value sin
[(2/16) 2] is factored from the third column of the two
lower 4 X 4 matrices in Fig. 9b, and is applied as indi-
cated by the @ symbol to the corresponding column-
vector elements. The column vector notation is then
changed to {z} to simplify the notation for subsequent
steps.

In the third reduction step, shown in Fig. 10, the
distributive law is applied directly to the matrix opera-
tions for a.,asa;, and b,. The matrix rows for a,a; are
folded to exploit odd column symmetry, and the rows for
b,,b, are folded to exploit even column symmetry with
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column factorization applied. The matrix operations for
the pairs (a.,a:), (@58s), (bi,br), and (bs,b;) are reduced,
as shown in Fig. 10, by matrix partitioning and column
factorization.

The fourth (final) reduction step can be done by in-
spection, and so is not shown in matrix form. All of the
reduction steps are, of course, equivalent to the DFA
portion of the RFFT flowgraph of Fig. 2, to which has
been added the transformation which converts the DFA
to the RFFT.

V. Concluding Remarks

The code notation for the sine function, used in the
RFFT derivation, has turned out to be similar to that
used in Ref. 4. A distinction, however, is in the fact that
the sine code used in the present report is value-oriented,

and has been applied to give the cosine as well as the
sine, tabular values. Indeed, the results of row shuffling,
as in Fig. 8a, show that the sine and cosine amplitude
coefficients are most efficiently obtained when inter-
spersed to some extent, and the value notation gives the
sorting keys for doing this.

An unelaborated comment in Ref. 5 suggested that the
complex exponentials of the FFT matrix be expressed in
real form, to minimize the number of real multiplications.
The RFFT derivation realizes such a minimization. Also
suggested in Ref. 5 was the possibility of regarding the
unit imaginary j as a “special element” to be exploited in
FFT matrix factorization schemes, and this has been done
to a maximum extent in the derivation of the comparison
FFT. The importance of j is not, of course, its use as a
pivotal element of the factorization, but rests rather with
the fact that multiplication by j is a trivial complex multi-
plication, to be exploited in the actual computations.
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(b) SHUFFLED-ORDER DFT FOR N = 16, OBTAINED BY
PERMUTING THE ROWS OF THE MATRIX IN (a).

Fig. 3. Discrete Fourier transforms for N = 16 using integer
exponents as symbolic representations of matrix elements

JPL DEEP SPACE NETWORK PROGRESS REPORT 42-32 131



REDEFINED DATA VECTOR

0] [0 0 0 0jo o o o —x0+rx8 (o 0 0o 0 0] "V}oq
8 o 8 0 8lo 8 o0 8 x|t xg 0 8 0 810 8 0 8 b4
5 0 4 8 1200 4 8 12|| % 0 4 8 12)0 4 8 12||
512 0 12 8 4 +|-0 12 8 4 X3+ Xy 0 12 8 4_:_0 12 8 Y3
52 0 2 4 618 10 12 14 X4t X2 0 2 4 618 10 12 14 Y4
10 0 10 4 14 { 8 2 12 6 X5+ %3 0 10 4 14 : 8 2 12 6 Y5
%6 0 6 12 218 14 4 10| %6**4 0 6 12 2|8 14 4 10 Y6
14| [0 14 12 10 l 8 & 4 2 X7t %5 o 14 12 10 { 8 6 4 2 || 77|
5 [0 1 2 314 5 6 7 ][%"% o 1 2 3j0 1 2 3] %= | {o v 2 3lo 1 2 3][r]
59 009 2 nla 13 6 15| x=% 0 2 nto 9 2 1 x| = Xg 009 2 1 l 9 2 1 Yy
°5 0 5 10 15 } 4 9 14 3 Xy = X1 0 5 10 15 : 0 5 10 15 Xy = X1p 9 5 10 1510 5 10 15| ]| Y10
13 0 13 10 7 L4 1 1411 X3 =%y 0 1310 710 13 10 7 X3 = X 0 13 10 7 :o 13 10 7 11
53 0 3 6 9 I]Z 15 2 5 %4 " X2 03 6 9 :s o140 @ g = %9 0 3 & 911_8 1m 141 Y12
1 00M 6 1127 2 3|73 01N 6 1 :8 3 4 @ (x5-x9 0 11 6 | :8 3 14 9 13
57 0 7 14 5112 3 10 1 X5 T Xy4 0 7 14 518 15 6 13|| @ xg-x9 0 7 14 508 15 6 13]]| "4
15 [0 15 14 13 : 12 11 10 9 | | *77 s [0 15 14 13 I 8 i |0 15 14 13 : 8 7 6 5 || N5

REDEFINED DATA VECTOR

Fig. 4. First step of reduction of DFT of Fig. 3
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Fig. 5. Steps 2, 3, and 4 of reduction of DFT
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exp (= 27/N 0n) - exp (~ 2m/N On)

exp (=i 2m/N 1 n) > - exp (-j 27/N 1 n)
. exp (-j 2m/N 2 n) -
- exp (~j 27/N mn) M

- exp (+j 2m/N + N/2)

- exp [+ 27/N (N/2-1) >
NOW INDEX m IS FREQUENCY 0 <m < N-1 ol )

COLUMN INDEX n IS TIME 0< n< N-J| .

. - exp (H 2m/N 3 n) -

. - exp (+j 2m/N 2n) -

exp [ 27/N (N=1) n) - - exp (+i 27/N 1 n) >

L 4 L b 4
@ (b)

cos (2m/16 0 n)
[ cos (27/16 1n) = jsin (27/16 1 n)
le—————————— cos (27/16 2n) -jsin (27/162n) —————
LEGEND FOR (a), (b):
m 1S ROW INDEX AND POSITIVE FREQUENCY 0 <m < N-1 .

n IS COLUMN INDEX AND TIME 0= n =< Nl
N IS DIMENSION OF MATRIX

¢————————me cos (2W/16 7 n) - sin (2w/16 7 n) —————p

Hi

cos (2m/16 8n)
cos (2w/16 7 n) +j sin (2m/16 7 n)

| cos (27/16 2n) +jsin (27/16 2n) ——— ]

fe———— — cos 27/16 1 n) +|sin(27/16 1n) — o

L (©) .

CASE N =16

Fig. 6. Reduction of DFT matrix to sine-cosine form
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(o) DFT IN TERMS OF REAL SINE-COSINE MATRIX

(b) DFA AS A MATRIX OPERATION
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$in (2w/16 7 n)

Fig. 7. Representation of DFT in terms of real DFA matrix
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(b) SHUFFLED~ORDER DFA

Fig. 8. Discrete Fourier analysis (DFA) for N = 16 using
integer code for quadrantal sine tabular values
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(b)
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Fig. 9. First and second reduction steps of the DFAfor N = 16
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. Third reduction step of the DFA for N = 16
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